
1

MIPS 2004 Tutorial

Data Stream Management
Systems
(DSMS)

- Applications, Concepts, and Systems -

Vera Goebel, Thomas Plagemann
Department of Informatics, University of Oslo, Norway

2

DSMS Tutorial Outline
• Introduction:

– What are DSMS? (terms)
– Why do we need DSMS? (applications)

• Example 1:
– Network monitoring with TelegraphCQ

• Concepts and issues:
– Architecture(s)
– Data modeling
– Query processing and optimization
– Data reduction
– Stream Mining

• Overview of existing systems
• Example 2:

– DSMS for sensor networks
• Summary:

– Open issues
– Conclusions

3

Why did we started this?
• Vera & Thomas on sabbatical at Eurecom
• Questions to Vera:

Ernst Biersack:
• We have so many measurement data can’t we use a
 DBMS for more systematic management?
• I have seen a tool from AT&T which seems to be very
 useful for network monitoring, tomography, etc.

Marc Dacier:
• To perform intrusion detection we have to analyze in
 detail just a small subset of all network packets. Can’t
 we use a DBMS to select efficiently and continuously only
 the relevant packets?

4

Handle Data Streams in DBS?

Traditional DBS DSMS

Query Processing

Register CQs Result
(stored)

Query Processing

Main MemoryData Stream(s) Data Stream(s)

SQL Query Result

Disk

Main Memory

Archive
Stored relations

Scratch store
(main memory or disk)

5

Data Management:
Comparison - DBS versus DSMS
Database Systems (DBS)
• Persistent relations

(relatively static, stored)

• One-time queries

• Random access

• “Unbounded” disk store

• Only current state matters

• No real-time services

• Relatively low update rate

• Data at any granularity

• Assume precise data

• Access plan determined by query
processor, physical DB design

DSMS
• Transient streams

(on-line analysis)

• Continuous queries (CQs)

• Sequential access

• Bounded main memory

• Historical data is important

• Real-time requirements

• Possibly multi-GB arrival rate

• Data at fine granularity

• Data stale/imprecise

• Unpredictable/variable data arrival and
characteristics

Adapted from [Motawani: PODS tutorial]

6

Related DBS Technologies
• Continuous queries
• Active DBS (triggers)
• Real-time DBS
• Adaptive, on-line, partial results
• View management (materialized views)
• Sequence/temporal/timeseries DBS
• Main memory DBS
• Distributed DBS
• Parallel DBS
• Pub/sub systems
• Filtering systems
• …

=> Must be adapted for DSMS!

7

DSMS Applications

• Sensor Networks:
– Monitoring of sensor data from many sources, complex filtering,

activation of alarms, aggregation and joins over single or
multiple streams

• Network Traffic Analysis:
– Analyzing Internet traffic in near real-time to compute traffic

statistics and detect critical conditions
• Financial Tickers:

– On-line analysis of stock prices, discover correlations, identify
trends

• On-line auctions
• Transaction Log Analysis, e.g., Web, telephone calls, …

8

Data Streams - Terms

• A data stream is a (potentially unbounded) sequence of
tuples

• Transactional data streams: log interactions between
entities
– Credit card: purchases by consumers from merchants
– Telecommunications: phone calls by callers to dialed parties
– Web: accesses by clients of resources at servers

• Measurement data streams: monitor evolution of entity
states
– Sensor networks: physical phenomena, road traffic
– IP network: traffic at router interfaces
– Earth climate: temperature, moisture at weather stations

VLDB 2003 Tutorial [Koudas & Srivastava 2003]

9

DSMS: Why Now?
• Massive volumes: deploy transactional data observation points, e.g.,

– AT&T long-distance: ~300M call tuples/day
– AT&T IP backbone: ~10B IP flows/day

• Massive volumes: generate automated, highly detailed measurements
– NOAA: satellite-based measurement of earth geodetics
– Sensor networks: huge number of measurement points

• Data feeds to DBSs: not new
– Modify underlying DBSs, data warehouses
– Complex queries are specified over stored data

• Recent developments: application- & technology-driven
– Need sophisticated near real-time queries/analyses
– Massive data volumes of transactions and measurements

• Traditional data feeds
– Simple queries (e.g., value lookup) needed in real-time
– Complex queries (e.g., trend analyses) performed off-line

• Near real-time queries/analyses, e.g.,
– AT&T: fraud detection on call detail tuple streams
– NOAA: tornado detection using weather radar data

VLDB 2003 Tutorial [Koudas & Srivastava 2003]

10

Telecomm. Applications:
Fraud Detection
• Telcos/ISPs want to track calling pattern of each of

~100M callers, and raise real-time fraud alerts
• Current Approach: Handwritten, optimized C code,

computing evolving signatures for each customer,
looking for variations

• Issues: Signature computation is I/O intensive, often
modified

• Solution: Using DSMS domain-specific language
– Abstract logical/physical streams and signatures
– Express I/O and CPU efficient signature programs cleanly

• Lesson: Essential to consider I/O issues for data
streams

VLDB 2003 Tutorial [Koudas & Srivastava 2003]

11

IP Network Application:
P2P Traffic Detection
• AT&T IP customer wanted to accurately monitor

P2P traffic evolution within its network
– Current approach: Netflow can be used to

determine P2P traffic volumes using TCP port
number found in Netflow data

– Issues: P2P traffic might not use known P2P port
numbers

– DSMS solution: Using Gigascope SQL-based
packet monitor

• Search for P2P related keywords within each TCP datagram
• Identified 3 times more traffic as P2P than Netflow

– Lesson: Essential to query massive volume data
streams

VLDB 2003 Tutorial [Koudas & Srivastava 2003]

12

IP Network Application:
Web Client Performance Monitoring
• AT&T IP customer wanted to monitor latency

observed by clients to find performance
problems
– Current approach: Measure latency at “active

clients” that establish network connections with
servers

– Issues: Use of “active clients” is not very
representative

– DSMS solution: Using Gigascope SQL-based
packet monitor

• Track TCP synchronization and acknowledgement packets
• Report round trip time statistics: latency

– Lesson: Essential to correlate multiple data streams

VLDB 2003 Tutorial [Koudas & Srivastava 2003]

13

DSMS Tutorial Outline
• Introduction:

– What are DSMS? (terms)
– Why do we need DSMS? (applications)

• Example 1:
– Network monitoring with TelegraphCQ

• Concepts and issues:
– Architecture(s)
– Data modeling
– Query processing and optimization
– Data reduction
– Stream Mining

• Overview of existing systems
• Example 2:

– DSMS for sensor networks
• Summary:

– Open issues
– Conclusions

14

Example 1: Traffic Analysis

• Need to analyze Internet traffic is increasing
• and so is the number of tools for this
• Examples:

– ISP monitor service levels, look for bottlenecks,etc.
– development of new protocols, like P2P

• Basic structure of tools:

Packet
capturing

Network link

Trace
file ResultAnalysis

15

Traffic Analysis (cont.)

• Performing traffic analysis to gain new
knowledge is an iterative process:

Packet
capturing Analysis

Network link

New insights

Develop new
analysis

16

Example: BitTorrent Analysis
• Designed for the transfer of large files to many

clients
– based on swarming: a server sends different parts of

a file to different clients, and the clients exchange
chunks with one another

• One session = distribution of a single (large) file
• Elements

– ordinary web server
– static “meta-info” file
– tracker
– initial client with the complete file
– on end user side: web browser + BitTorrent client

17

Example: BitTorrent Analysis (cont.)
• Start running a web server that hosts a torrent file

– torrent file contains the IP address of the tracker
• The tracker (often not on web server) tracks all peers

– initially, it must know at least one peer with the complete file
– peer with full file: seed
– peer still downloading file: leecher

• On client side
– BT client reads tracker IP address and contacts the tracker

(through HTTP or HTTPS)
– tracker provides to the BT client a set of active peers (leechers

and seeds, typically 40) to cooperate with
– clients regularly report state (% of download) to the tracker

18

Example: BitTorrent Analysis (cont.)
Web Server Tracker Server

New Peer

Updates

Active peers
IP1, IP2, IP3, ...

BT
Client

Torrent
File

Random peers
IPx, IPy, ...

1. Download torrent meta-info

2. Launch BT client

3. BT client contacts tracker (HTTP)

4. Tracker picks 40 peers at random
for the new client

5. BT client cooperates with peers
returned by the tracker

19

Example: BitTorrent Analysis (cont.)

Tracker
trace

Calculate
Ø throughput
of leechers

Network link

Most leechers
are from USA,
Canada,NL, and
Australia

What are the
throughputs for
these countries?

Calculate
Ø throughput
of leechers in

US, CN, NL, AU

.... and so on and so on

By the end of the day 66 scripts have been implemented

20

Expectations
• Be helpful for typical traffic analysis tasks:

– the load of a system
• how often are certain ports, like FTP, or HTTP, of a server

contacted
• which share of bandwidth is used by different applications
• which departments use how much bandwidth on the

university backbone
– characteristics of flows

• distribution of life time and size of flows
• relation between number of lost packets and life time of flows
• what are the reasons for throughput limitations, or

– characteristics of sessions:
• how long do clients interact with a web server
• which response time do clients accept from servers
• how long are P2P clients on-line after they have successfully

downloaded a file

21

Expectations (cont.)

Packet
capturing Analysis

Network link

Result

Trace
file

Allow online and offline analysis

Facilitate development and reuse
of analysis components

Manage data and analyze data with the same tool

22

Expectations (cont.)

• Provide sufficient performance:
– idealized gigabit/s link

• all packets 1500 byte, TCP/IP header 64 byte
• 42 megabit/s of header information

– more realistic: compression of 9:1 or less

• approx. 880 megabit/s on gigabit/s link
• approx. 11 megabit/s for 100 megabit/s network

23

Approach
• Public domain DSMS (fall 2003):

– TelegraphCQ
– Aurora ... only source tree, complete???

• Student project by A. Bergamini & G. Tulo:
– install TelegraphCQ
– connect it to wrappers, i.e., sources
– model TCP traces/streams
– develop queries for simple but typical tasks
– try to re-implement an existing complex tool
– identify performance bounds

24

TelegraphCQ

• Characterization of it’s developers:
– “a system for continuous dataflow

processing”
– “aims at handling large streams of continuous

queries over high-volume highly variable data
streams”

• Extends PostgreSQL
– adaptive query processing operators
– shared continuous queries
– data ingress operations

25

Source: TelegraphCQ getting started Guide

26

TelegraphCQ Architecture

Source1
TCPdump

Source2
TCPdump

TCQ
Wrapper

TCQ
Wrapper

TCQ
Clearing
House

TCQ
BackEnd

TCQ
FrontEnd

Shared Memory Infrastructure

Client

Phase 1: Data Acquisition Phase 2:
Continuous
Query
Execution

Phase 3: Presentation of results

27

Continous Queries in TCQ

• Data streams are defined in DDL with
CREATE STREAM (like tables)

SELECT <select_list>
FROM <relation_and_pstream_list>
WHERE <predicate>
GROUP BY <group_by_expressions>
WINDOW stream[interval], ...
ORDER BY <order_by_expressions>

28

Continous Queries in TCQ (cont.)

• Restrictions in TelegraphCQ 0.2 alpha release [9]:
– windows can only be defined over streams (not for

PostgreSQL tables)
– WHERE clause qualifications that join two streams may

only involve attributes, not attribute expressions or
functions

– WHERE clause qualifications that filter tuples must be
of the form attribute operand constant

– WHERE clause may only contain AND (not OR); sub
queries are not allowed

– GROUP BY and ORDER BY clauses are only allowed
in window queries

29

Stream Definition
• CREATE STREAM p6trace.tcp (ip_src
cidr, ip_dst cidr, hlen bigint, tos
int, length bigint, id bigint,
frag_off bigint, ttl bigint, prot
int, ip_hcsum bigint, port_src
bigint, port_dst bigint, sqn
bigint, ack bigint, tcp_hlen
bigint, flags varchar(10), window
bigint, tcp_csum bigint, tcqtime
timestamp TIMESTAMPCOLUMN) type
ARCHIVED;

30

Task 1
• How many packets have been sent during the

last five minutes to certain ports?
• Store all ports of interests in a table and join

with the stream
• CREATE TABLE services (port bigint,
counter bigint);

• SELECT services.port, count(*)
FROM p6trace.tcp, services
WHERE
p6trace.tcp.port_dst=services.port
GROUP BY services.port
WINDOW p6trace.tcp ['5 min'];

31

Task 2
• How many bytes have been exchanged on each

connection during the last minute?
• Simple heuristic to identify connections:

– during a one minute window all packets with the
same sender and receiver IP addresses and port
numbers belong to the same connection

• SELECT ip_src, port_src, ip_dst,
port_dst, sum(length-ip_len-tcphlen)
FROM p6trace.tcp
GROUP BY ip_src, port_src, ip_dst,
port_dst
WINDOW p6trace.tcp [‘1 min’];

32

Task 3
• How many bytes are exchanged over the

different connections during each week?
• Two problems to handle this in a CQ:

– GROUP BY clause can only be used together with a
WINDOW clause

• window smaller than one week
• payload of each packet would contribute several times to

intermediate results
• how to remove this redundancy?
• tumbling or jumping windows are needed

– identification of connections
• simple heuristic from task 2 does not work
• boils down to the generic problem of association

identification

33

Identification of Associations

• Use address fields and rules
• Example: TCP connections
–GROUP BY adresses only

128934561289

TCP
ports

IP
Addr.

t1tn
– rule: if tn – t1 < T then same connection

 else new connection

34

Identification of Associations (cont.)

IP d. IP s. Port d. Port s. StatisticsA priori no address values are known

Check for each new packet:
-is address combination known?
 NO: insert new entry
 YES: is it a new or old connection?
 OLD: update statistics
 NEW: insert new connection

Time

1289

t1

1 2 8 9 1 t1

3456

t2

3 4 5 6 t21

1289

tn

1 2 8 9 1 tn

35

Identification of Associations (cont.)

IP d. IP s. Port d. Port s. StatisticsA priori no address values are known

Check for each new packet:
-is address combination known?
 NO: insert new entry
 YES: is it a new or old connection?
 OLD: update statistics
 NEW: insert new connection

Time

1289

t1

1 2 8 9 2 tn

3456

t2

3 4 5 6 t21

1289

tn

With a single pass over the data this is only possible with sub-queries in SQL

36

Task 4
• Which department has used how much bandwidth on

the university backbone in the last five minutes?
• Store address ranges of all departments in a table
• Check with “>>” which address range contains the IP

address of the packet in the data stream
• CREATE TABLE departments (name varchar(30),

prefix cidr, traffic bigint);

SELECT departments.name, sum(length-hlen-tcp_hlen)
FROM p6trace.tcp, departments
WHERE departments.prefix >> p6trace.tcp.ip_src
GROUP BY departments.name
WINDOW p6trace.tcp ['5 min'];

• TelegraphCQ prototype produces incorrect results if
“>>” is used in a join, but works correctly with “=”

37

Task 4 (cont.)
• ”Solution”: use ”=” and enumerate all adresses in a

stored table
• CREATE TABLE departments (name
varchar(30), ip_addr cidr, traffic
bigint);

SELECT departments.name, sum(length-hlen-
tcp_hlen)
FROM p6trace.tcp, departments
WHERE departments.ip_addr =
p6trace.tcp.ip_src
GROUP BY departments.name
WINDOW p6trace.tcp ['5 min'];

38

T1:
TCPdump
trace

T2:
Connections

Q1

T3:
Connections
with packets

Q3

Predefined
RTT candi-
dates

Q2

T4:
Flights

Q4

T5:
RTT

TCPdump trace

Identify connections

Partition connections
into flights

Find losses

Relate flights to
connection
states

Select best fit

RTT

T-RAT Re-Design with TCQ
Generate T2 with all connections

Relate all packets to their connections

Join all packets with RTT
candidates to create the flights
(needs external function)

Classify flights into
protocol states to
find best RTT match
(needs external
function)

39

Main Insights from T-RAT Exercise

• It is not possible to do this in a continuous query
(identification of connections and flights)

• Main functionality of T-RAT has to done in PostgreSQL
– T-RAT is using complex heuristics which cannot be expressed

in SQL
– the extensibility of TelegraphCQ & PostgreSQL, allows to

increase the expressiveness of queries with external functions
• T-RAT and other complex analysis can be performed off-

line with TelegraphCQ, even if the main functionality is
then hidden in external functions instead of SQL
statements

40

Performance Evaluation

• We just want to get a rough idea...
• Experimental set-up:

NIC

IPLayer

Wrapper

TCQ

NIC

WG send

NIC

WG recv.

Eurecoms play-ground
100 megabit/s
Outside of firewall
Nearly no traffic

Workload generator
streams data over
TCP connection
with different fixed
rates

Pentium 4 machine with a 2Ghz CPU
524 MB RAM, 100 Mb/s Ethernet card
Linux version 2.4.18-3

Start different types of queries
increase the load
identify when TCQ looses data

41

Performance Evaluation (cont.)

0

1

2

3

4

5

6

7

1 2 4 8 16 Number of attributes

M
B

/s

Projection

Aggregation

Join

Task 1 Task 4

Performance of JOIN is surprising!

42

Performance Evaluation (cont.)
• Some additional investigations on the JOIN

performance:
– number of matches between table and stream does impact

performance
– size of table and position of the matching entry influence

performance
– but with 100000 entries and matching entry is the last one,

TelegraphCQ can still handle more than 2 MB/s of network data
without loss

• Disclaimer: this was no in-depth evaluation
• TelegraphCQ is fast enough to perform meaningful

network analysis tasks on a commodity PC up to
network loads of 2,5 MB/s

43

Lessons Learned
• TelegraphCQ is quite useful for many on-line monitoring

tasks (sliding window!)
• Performance is not too bad
• In-build C functions can help
• Not all features are fully implemented, i.e. only equi-

joins, but “>>” might be helpful for many tasks
• Sub queries are not supported, i.e., all tasks that require

to identify associations by inspecting the data stream
twice cannot be solved on-line

• Jumping or tumbling windows are not supported and
redundancy by sliding window cannot be removed

• On-line and off-line handling is not integrated
• TelegraphCQ team has been very helpful!

44

DSMS Tutorial Outline
• Introduction:

– What are DSMS? (terms)
– Why do we need DSMS? (applications)

• Example 1:
– Network monitoring with TelegraphCQ

• Concepts and issues:
– Architecture(s)
– Data modeling
– Query processing and optimization
– Data reduction
– Stream Mining

• Overview of existing systems
• Example 2:

– DSMS for sensor networks
• Summary:

– Open issues
– Conclusions

45

DSMS – Concepts and Issues
• Applications requirements
• Architecture(s)
• Data modeling

– Relation-based models
– Object-based models
– Procedural models

• Query languages / operators
– Declarative (relational or object-oriented) query languages
– Other (procedural) approaches using higher level graphical approach to

compose queries
– Query repositories
– New types of query operators: windows, …

• Query processing and optimization
– Approaches towards optimizing stream queries

• Data reduction techniques
– Filters, Punctuation, Synopsis, Sketches, Wavelets, …

• Stream Mining

46

Application Requirements
• Data model and query semantics: order- and time-based operations

– Selection
– Nested aggregation
– Multiplexing and demultiplexing
– Frequent item queries
– Joins
– Windowed queries

• Query processing:
– Streaming query plans must use non-blocking operators
– Only single-pass algorithms over data streams

• Data reduction: approximate summary structures
– Synopses, digests => no exact answers

• Real-time reactions for monitoring applications => active mechanisms
• Long-running queries: variable system conditions
• Scalability: shared execution of many continuous queries, monitoring multiple

streams
• Stream Mining

47

Generic DSMS Architecture

Input
Monitor

Output
Buffer

Q
ue

ry
 P

ro
ce

ss
or

Query
Reposi-

tory

Working
Storage

Summary
Storage

Static
Storage

Streaming
Inputs

Streaming
Outputs

Updates to
Static Data

User
Queries

[Golab & Özsu 2003]

48

DSMS: 3-Level Architecture

VLDB 2003 Tutorial [Koudas & Srivastava 2003]

DBS
• Data feeds to database can also be

treated as data streams
• Resource (memory, disk, per-tuple

computation) rich
• Useful to audit query results of DSMS
• Supports sophisticated query

processing, analyses

DSMS
• DSMS at multiple observation points,

(voluminous) streams-in, (data reduced)
streams-out

• Resource (memory, per tuple computation)
limited, esp. at low-level

• Reasonably complex, near real-time, query
processing

• Identify what data to populate in DB

49

DBS versus DSMS: Issues
DBS

• Persistent relations
• Tuple set/bag
• Modifications
• Transient queries
• Exact query answers
• Arbitrary query processing
• Fixed query plans

DSMS

• Transient relations
• Tuple sequence
• Appends
• Persistent queries
• Approximate query answers
• One-pass query processing
• Adaptive query plans

50

Data Models
• Real-time data stream: sequence of data items that

arrive in some order and may be seen only once.
• Stream items: like relational tuples

- relation-based models, e.g., STREAM, TelegraphCQ; or
instanciations of objects

- object-based models, e.g., COUGAR, Tribeca
• Window models:

– Direction of movement of the endpoints: fixed window, sliding
window, landmark window

– Physical / time-based windows versus logical / count-based
windows

– Update interval: eager (update for each new arriving tuple)
versus lazy (batch processing -> jumping window), non-
overlapping tumbling windows

51

Relation: Tuple Set or Sequence?

• Traditional relation = set/bag of tuples
• Tuple sequences:

– Temporal databases: multiple time orderings
– Sequence databases: integer “position” ->

tuple
• DSMS:

– Ordering domains: Gigascope, Hancock
– Position ordering: Aurora, STREAM

VLDB 2003 Tutorial [Koudas & Srivastava 2003]

52

Timestamps
• Explicit

– Injected by data source
– Models real-world event represented by tuple
– Tuples may be out-of-order, but if near-ordered can reorder with

small buffers
• Implicit

– Introduced as special field by DSMS
– Arrival time in system
– Enables order-based querying and sliding windows

• Issues
– Distributed streams?
– Composite tuples created by DSMS?

53

Time
• Easiest: global system clock

– Stream elements and relation updates timestamped
on entry to system

• Application-defined time
– Streams and relation updates contain application

timestamps, may be out of order
– Application generates “heartbeat”

• Or deduce heartbeat from parameters: stream skew,
scrambling, latency, and clock progress

– Query results in application time

54

Update: Modifications or Appends?

• Traditional relational updates: arbitrary
data modifications

• Append-only relations have been studied:
– Tapestry: emails and news articles
– Chronicle data model: transactional data

• DSMS:
– Streams-in, stream-out: Aurora, Gigascope,

STREAM
– Stream-in, relation-out: Hancock

VLDB 2003 Tutorial [Koudas & Srivastava 2003]

55

Queries - I
• DBS: one-time (transient) queries
• DSMS: continuous (persistent) queries

– Support persistent and transient queries
– Predefined and ad hoc queries (CQs)
– Examples (persistent CQs):

• Tapestry: content-based email, news filtering
• OpenCQ, NiagaraCQ: monitor web sites
• Chronicle: incremental view maintenance

• Unbounded memory requirements
• Blocking operators: window techniques
• Queries referencing past data

56

Queries - II
• DBS: (mostly) exact query answer
• DSMS: (mostly) approximate query answer

– Approximate query answers have been studied:
• Synopsis construction: histograms, sampling, sketches
• Approximating query answers: using synopsis structures
• Approximate joins: using windows to limit scope
• Approximate aggregates: using synopsis structures

• Batch processing
• Data reduction: sampling, synopses, sketches,

wavelets, histograms, …

57

Queries – III
Continuous Query Semantics
• Monotonic continuous queries

re-evaluate the query over newly arrived items and
append qualifying tuples to the result

• Non-monotonic continuous queries
may need to be re-computed from scratch during every
re-evaluation

• Challenges (problems to be solved):
– Unbounded memory requirements
– Approximate query answering
– Sliding windows
– Batch processing, sampling, synopses
– Blocking operators
– Queries referencing past data

58

One-pass Query Evaluation

• DBS:
– Arbitrary data access
– One/few pass algorithms have been studied:

• Limited memory selection/sorting: n-pass quantiles
• Tertiary memory databases: reordering execution
• Complex aggregates: bounding number of passes

• DSMS:
– Per-element processing: single pass to reduce drops
– Block processing: multiple passes to optimize I/O cost

VLDB 2003 Tutorial [Koudas & Srivastava 2003]

59

Query Plan

• DBS: fixed query plans optimized at
beginning

• DSMS: adaptive query operators
– Adaptive plans Adaptive query plans have

been studied:
• Query scrambling: wide-area data access
• Eddies: volatile, unpredictable environments

VLDB 2003 Tutorial [Koudas & Srivastava 2003]

60

Query Languages & Processing
• Stream query language issues (compositionality, windows)
• SQL-like proposals suitably extended for a stream

environment:
– Composable SQL operators
– Queries reference relations or streams
– Queries produce relations or streams

• Query operators (selection/projection, join, aggregation)
• Examples:

– GSQL (Gigascope)
– CQL (STREAM)

• Optimization objectives
• Multi-query execution

61

Windows
• Mechanism for extracting a finite relation from an infinite stream
• Various window proposals for restricting operator scope

– Windows based on ordering attributes (e.g., time)
– Windows based on tuple counts
– Windows based on explicit markers (e.g., punctuations)
– Variants (e.g., partitioning tuples in a window)

VLDB 2003 Tutorial [Koudas & Srivastava 2003]

62

Ordering Attribute Based Windows

• Assumes the existence of an attribute that defines the
order of stream elements/tuples (e.g., time)

• Let T be the window length (size) expressed in units of
the ordering attribute (e.g., T may be a time window)

• Various possibilities exist:

VLDB 2003 Tutorial [Koudas & Srivastava 2003]

63

Tuple Count Based Windows
• Window of size N tuples (sliding, shifting) over the

stream
• Problematic with non-unique time stamps associated

with tuples
• Ties broken arbitrarily may lead to non deterministic

output

VLDB 2003 Tutorial [Koudas & Srivastava 2003]

64

Punctuation Based Windows

• Application inserted “end-of-processing” markers
– Each data item identifies “beginning-of-processing”

• Enables data item-dependent variable length
windows
– e.g., a stream of auctions

• Similar utility in query processing
– Limit the scope of query operators relative to the

stream

VLDB 2003 Tutorial [Koudas & Srivastava 2003]

65

Sliding Window 15 s
Sliding Window 15 s

Sliding Window 15 s

Query over 1st window

Partial
Result 1

Query over 2nd window

Partial
Result 2

Query over 3rd window

Partial
Result 3

Sliding Window

66

Sample Stream
Traffic (sourceIP -- source IP address

sourcePort -- port number on source
destIP -- destination IP address
destPort -- port number on destination
length -- length in bytes
time -- time stamp

);

67

Selections, Projections
• Selections, (duplicate preserving) projections

are straightforward
– Local, per-element operators
– Duplicate eliminating projection is like grouping

• Projection needs to include ordering attribute
– No restriction for position ordered streams

SELECT sourceIP, time
FROM Traffic
WHERE length > 512

VLDB 2003 Tutorial [Koudas & Srivastava 2003]

68

Join Operators
• General case of join operators problematic on

streams
– May need to join arbitrarily far apart stream tuples
– Equijoin on stream ordering attributes is tractable

• Majority of work focuses on joins between
streams with windows specified on each stream

SELECT A.sourceIP, B.sourceIP
FROM Traffic1 A [window T1], Traffic2 B [window T2]
WHERE A.destIP = B.destIP

VLDB 2003 Tutorial [Koudas & Srivastava 2003]

69

Aggregation

• General form:
– select G, F1 from S where P group byG

having F2 op ϑ
– G: grouping attributes, F1,F2: aggregate

expressions
• Aggregate expressions:

– distributive: sum, count, min, max
– algebraic: avg
– holistic: count-distinct, median

VLDB 2003 Tutorial [Koudas & Srivastava 2003]

70

Aggregation in Theory
• An aggregate query result can be streamed if

group by attributes include the ordering attribute
• A single stream aggregate query “select G,F

from S where P group by G” can be executed in
bounded memory if:
– every attribute in G is bounded
– no aggregate expression in F, executed on an

unbounded
– attribute, is holistic

• Conditions for bounded memory execution of
aggregate queries on multiple streams

VLDB 2003 Tutorial [Koudas & Srivastava 2003]

71

Aggregation & Approximation
• When aggregates cannot be computed exactly

in limited storage, approximation may be
possible and acceptable

• Examples:
– select G, median(A) from S group by G
– select G, count(distinct A) from S group by G
– select G, count(*) from S group by G having count(*)

> f|S|
• Data reduction: use summary structures

– samples, histograms, sketches …
• Focus of different tutorial

VLDB 2003 Tutorial [Koudas & Srivastava 2003]

72

Sampling

• A small random sample S of the data often well-
represents all the data
– Example: select agg from R where R.e is odd (n=12)

– If agg is avg, return average of odd elements in S

– If agg is count, return average over all elements e in S of
• n if e is odd

• 0 if e is even

Data stream: 9 3 5 2 7 1 6 5 8 4 9 1

Sample S: 9 5 1 8

answer: 5

answer: 12*3/4 =9 Unbiased!

73

Histograms

• Histograms approximate the frequency
distribution of element values in a stream

• A histogram (typically) consists of
– A partitioning of element domain values into

buckets
– A count CB per bucket B (of the number of

elements in B)
• Long history of use for selectivity

estimation within a query optimizer

74

Wavelets
• For hierarchical decomposition of functions/signals
• Haar wavelets

– Simplest wavelet basis => Recursive pairwise averaging and
differencing at different resolutions

 Resolution Averages Detail Coefficients
[2, 2, 0, 2, 3, 5, 4, 4]

[2, 1, 4, 4] [0, -1, -1, 0]

[1.5, 4] [0.5, 0]

[2.75] [-1.25]

----3

2

1

0

Haar wavelet decomposition:[2.75, -1.25, 0.5, 0, 0, -1, -1, 0]

75

Disorder in Data Streams
• Many queries over data streams rely on some kind

of order on the input data items
– Can often use more efficient operator implementations if the input is

sorted on “interesting attributes” (e.g. aggregates)
• What causes disorder in streams?

– Items from the same source may take different routes
– Many sources with varying delays
– May have been sorted on different attribute

• Sorting a stream may be undesirable
• May be more than one possible interesting order over a

stream
– For example, data items may have creation time and

arrival time
– Sorted on arrival time, but creation time also interesting

76

Punctuations
• Punctuations embedded in stream denote end of subset of data

– Unblocks blocking operators
– Reduces state required by stateful operators

• New operator: Punctuate
– Has special knowledge regarding the input stream

• timer-based, k-constraints, communication with stream source
– Emits punctuations in source schema based on special knowledge

• Punctuations can help in two ways:
• Maintain order – Punctuations unblock sort

– Similar to approach in Gigascope
– Order-preserving operators include sort behavior for punctuations

• Allow disorder – Punctuations define the end of subsets
– Operators use punctuations, not order, to output results
– Reduces tuple latency

77

Example - I: Queries for Network
Traffic Management
• Large network, e.g., backbone network of ISP
• Monitor a variety of continuous data streams that may

be unpredictable and have high data rates
• Provide a ”general-purpose” system for monitoring
• Traditional DBS do not support on-line continuous query

processing
• Example: network packet traces from multiple network

links, here only two specific links: customer link C,
backbone link B, we consider only five packet header
fields: src, desr, id, len, time

78

Example - II: Queries for Network
Traffic Management
• Compute load on link B averaged over one-

minute intervals, notifying the network operator
when the load crosses a specified threshold t.
Two special functions: getminute,
notifyoperator

SELECT notifyoperator(sum(len))
FROM B
GROUP BY getminute(time)
HAVING sum(len) > t

79

Example - III: Queries for Network
Traffic Management
• Isolate flows in the backbone link and determine

amount of traffic generated by each flow. Flow:
sequence of packets grouped in time, and sent
from a specific source to a specific destination.

SELECT flowid, src, dest, sum(len) AS flowlen
FROM (SELECT src, dest, len, time

 FROM B
 ORDER BY time)

GROUP BY src, dest, getf lowid(src, dest, time)
AS flowid

80

Example - IV: Queries for Network
Traffic Management
• Ad hoc continuous queries when network

is congested to determine whether the
customer network is the cause.

SELECT count(*)
FROM C, B
WHERE C.src = B.src and C.dest = B.dest

and C.id = B.id /
(SELECT count (*) FROM B)

81

Example - V: Queries for Network
Traffic Management
• Continuous query for monitoring the source-destination

pairs in the top 5% in terms of backbone traffic.

WITH Load AS
(SELECT src, dest, sum(len) AS traffic
 FROM B
 GROUP BY src, dest)

SELECT src, dest, traffic
FROM Load AS L1
WHERE (SELECT count (*)

 FROM Load AS L2
 WHERE L2.traffic > L1.traffic) >
(SELECT 0.95xcount(*) FROM Load)

ORDER BY traffic

82

Query Languages
3 querying paradigms for streaming data:
1. Relation-based: SQL-like syntax and enhanced support

for windows and ordering, e.g., CQL (STREAM),
StreaQuel (TelegraphCQ), AQuery, GigaScope

2. Object-based: object-oriented stream modeling, classify
stream elements according to type hierarchy, e.g.,
Tribeca, or model the sources as ADTs, e.g., COUGAR

3. Procedural: users specify the data flow, e.g., Aurora,
users construct query plans via a graphical interface

(1) and (2) are declarative query languages,
currently, the relation-based paradigm is mostly used.

83

Query Processing - I
• Continuous query plans:

– push-based approaches - data is pushed to the DSMS by the
source(s)

– trad.DBS approaches are pull-based, queue problems (overflows)
– open problems: redesign disk-based data structures and indices

• Processing multiple continuous queries:
– sharing query plans
– indexing query predicates

• Distributed query processing:
– multiple data streams arriving from remore sources

=> distributed optimization strategies

84

Query Processing - II
(1) Non-blocking operators - 3 techniques for unblocking stream operators:

• windowing
• incremental evaluation
• exploiting stream constraints (punctuations)

(2) Approximate algorithms – if (1) does not work, compact stream
summaries may be stored and approximate queries may be run over the
summaries
-> Trade-off: accuracy vs. amount of memory
Methods of generating synopses: counting methods, hashing methods,
sampling methods, sketches, wavelet transformations

(3) Sliding window algorithms:
• windowed sampling
• symmetric hash join

(4) On-line data stream mining (single pass): computing stream signatures,
decision trees, forecasting, k-medians clustering, nearest neighbour
queries, regression analysis, similarity detection, pattern matching

85

Approximate Query Answering Methods

• Sliding windows
– Only over sliding windows of recent stream data
– Approximation but often more desirable in applications

• Batched processing, sampling and synopses
– Batched if update is fast but computing is slow

• Compute periodically, not very timely
– Sampling if update is slow but computing is fast

• Compute using sample data, but not good for joins, etc.
– Synopsis data structures

• Maintain a small synopsis or sketch of data
• Good for querying historical data

• Blocking operators, e.g., sorting, avg, min, etc.
– Blocking if unable to produce the first output until

seeing the entire input
[Han 2004]

86

Query Optimization
• DBS: table based cardinalities used in query optimization

=> Problematic in a streaming environment
• Cost metrics and statistics: accuracy and reporting delay vs.

memory usage, output rate, power usage
• Query optimization: query rewriting to minimize cost metric,

adaptive query plans, due to changing processing time of
operators, selectivity of predicates, and stream arrival rates

• Query optimization techniques
– stream rate based
– resource based
– QoS based

• Continuously adaptive optimization
• Possibility that objectives cannot be met:

– resource constraints
– bursty arrivals under limited processing capability

87

Traditional Query Optimization

Executor:
Runs chosen plan to

completion

Chosen
query plan

Optimizer:
Finds “best” query plan to

process this query

Query

Statistics Manager:
Periodically collects statistics,
e.g., table sizes, histograms

Which statistics
are required

Estimated
statistic
s

[Babu 2004]

88

STREAM - Optimizing CQs

• Continuous queries are long-running
• Stream characteristics can change over

time
– Data properties: Selectivities, correlations
– Arrival properties: Bursts, delays

• System conditions can change over time
 Performance of a fixed plan can change

significantly over time
Adaptive processing: find best plan for

current conditions
[Babu 2004]

89

STREAM - Traditional
Optimization  StreaMon

Optimizer:
Finds “best” query plan to

process this query

QueryWhich statistics
are required

Estimated
statistic
s

Reoptimizer:
Ensures that plan is efficient

for current characteristics

Profiler:
Monitors current stream and

system characteristics

Executor:
Executes current plan

Decisions to
adaptCombined in

part for efficiency

[Babu 2004]

90

STREAM - Pipelined Filters

• Order commutative filters over a
stream

• Example: Track HTTP packets with
destination address matching a
prefix in given table and content
matching “*\.ida”

• Simple to complex filters
– Boolean predicates
– Table lookups
– Pattern matching
– User-defined functions
– Joins as we will see later

σ1

σ2

σ3

PacketsPackets

Bad packetsBad packets

[Babu 2004]

91

STREAM - Metrics for an
Adaptive Algorithm
• Speed of adaptivity

– Detecting changes and
finding new plan

• Run-time overhead
– Collecting statistics,

reoptimization, plan
migration

• Convergence properties
– Plan properties under

stable statistics

ProfilerProfiler ReoptimizerReoptimizer

ExecutorExecutor

StreaMonStreaMon

[Babu 2004]

92

Optimization Objectives

• Rate-based optimization:
– Take into account the rates of the streams in

the query evaluation tree during optimization
– Rates can be known and/or estimated

• Maximize tuple output rate for a query
– Instead of seeking the least cost plan, seek

the plan with the highest tuple output rate

VLDB 2003 Tutorial [Koudas & Srivastava 2003]

93

Rate Based Optimization – I

• Output rate of a plan: number of tuples produced per unit time
• Derive expressions for the rate of each operator
• Combine expressions to derive expression r(t) for the plan output

rate as a function of time:
– Optimize for a specific point in time in the execution
– Optimize for the output production size

VLDB 2003 Tutorial [Koudas & Srivastava 2003]

94

Rate Based Optimization – II

• Optimize for resource (memory) consumption
• A query plan consists of interacting operators,

with each tuple passing through a sequence of
operators

• When streams are bursty, tuple backlog
between operators may increase, affecting
memory requirements

• Goal: scheduling policies that minimize
resource consumption

VLDB 2003 Tutorial [Koudas & Srivastava 2003]

95

Operator Scheduling

• When tuple arrival rate is uniform:
– a simple FIFO scheduling policy suffices
– let each tuple flow through the relevant operators

VLDB 2003 Tutorial [Koudas & Srivastava 2003]

96

Progress Chart: Chain Scheduling

VLDB 2003 Tutorial [Koudas & Srivastava 2003]

97

QoS Based Optimization
• Query and operator scheduling based on QoS

requirements
• Two-level scheduling policy:

– Operator batching: superbox selection, superbox traversal
based on avg throughput, avg latency, minimizing memory

– Tuple batching
Optimization Objectives
• Multi-way join techniques proposed:

– start with a fixed plan
– moderately adjust it as tuples arrive

• Eddies framework for adaptive query optimization:
– Continuously adapt the evaluation order as tuples arrive

VLDB 2003 Tutorial [Koudas & Srivastava 2003]

98

Load Shedding

• When input stream rate exceeds system
capacity a stream manager can shed load
(tuples)

• Load shedding affects queries and their
answers

• Introducing load shedding in a data
stream manager is a challenging problem

• Random and semantic load shedding

VLDB 2003 Tutorial [Koudas & Srivastava 2003]

99

Load Shedding in Aurora

• QoS for each application as a function
relating output to its utility
– Delay based, drop based, value based

• Techniques for introducing load shedding
operators in a plan such that QoS is
disrupted the least
– Determining when, where and how much

load to shed

VLDB 2003 Tutorial [Koudas & Srivastava 2003]

100

Load Shedding in STREAM

• Formulate load shedding as an
optimization problem for multiple sliding
window aggregate queries
– Minimize inaccuracy in answers subject to

output rate matching or exceeding arrival rate
• Consider placement of load shedding

operators in query plan
– Each operator sheds load uniformly with

probability pi

VLDB 2003 Tutorial [Koudas & Srivastava 2003]

101

Multi-query Processing

• In traditional multi-query optimization:
– sharing (of expressions, results, etc.) among

queries can lead
– to improved performance

• Similar issues arise when processing
queries on streams:
– sharing between select/project expressions
– sharing between sliding window join

expressions

VLDB 2003 Tutorial [Koudas & Srivastava 2003]

102

Grouped Filters

VLDB 2003 Tutorial [Koudas & Srivastava 2003]

103

Shared Window Joins
Consider the two queries:

select sum (A.length
from Traffic1 A [window 1hour],

Traffic2 B [window 1 hour]
where A.destIP = B.destIP

select count (distinct A.sourceIP)
from Traffic1 A [window 1 min],

Traffic2 B [window 1 min]
where A.destIP = B.destIP

• Great opportunity for optimization as windows are highly shared
• Strategies for scheduling the evaluation of shared joins:

– Largest window only
– Smallest window first
– Process at any instant the tuple that is likely to benefit the largest number of

joins (maximize throughput)

VLDB 2003 Tutorial [Koudas & Srivastava 2003]

104

Stream Data Mining
• Stream mining

– It shares most of the difficulties with stream querying
– Patterns are hidden and more general than querying
– It may require exploratory analysis

• Not necessarily continuous queries

• Stream data mining tasks
– Multi-dimensional on-line analysis of streams
– Mining outliers and unusual patterns in stream data
– Clustering data streams
– Classification of stream data

[Han 2004]

105

Stream Mining - Challenges
• Most stream data are at pretty low-level or multi-

dimensional in nature: needs ML/MD processing
• Analysis requirements

– Multi-dimensional trends and unusual patterns
– Capturing important changes at multi-dimensions/levels
– Fast, real-time detection and response
– Comparing with data cube: Similarity and differences

• Stream (data) cube or stream OLAP: Is this feasible?
– Can we implement it efficiently?

[Han 2004]

106

Examples:
Multi-Dimensional Stream Analysis
• Analysis of Web click streams

– Raw data at low levels: seconds, web page addresses, user IP
addresses, …

– Analysts want: changes, trends, unusual patterns, at reasonable
levels of details

– E.g., Average clicking traffic in North America on sports in the
last 15 minutes is 40% higher than that in the last 24 hours.”

• Analysis of power consumption streams
– Raw data: power consumption flow for every household, every

minute
– Patterns one may find: average hourly power consumption

surges up 30% for manufacturing companies in Chicago in the
last 2 hours today than that of the same day a week ago

[Han 2004]

107

Stream Data Reduction

Challenges of OLAPing stream data
- Raw data cannot be stored
- Simple aggregates are not powerful enough
- History shape and patterns at different levels are desirable:

multi-dimensional regression analysis
Proposal

- A scalable multi-dimensional stream “data cube” that can
aggregate regression model of stream data efficiently without
accessing the raw data

Stream data compression
- Compress the stream data to support memory- and time-

efficient multi-dimensional regression analysis

[Han 2004]

108

Data Warehouse:
Stream Cube Architecture

• A tilt time frame
– Different time granularities (second, minute, quarter, hour, day, week, …)

• Critical layers
– Minimum interest layer (m-layer)
– Observation layer (o-layer)
– User: watches at o-layer and occasionally needs to drill-down down to m-layer

• Partial materialization of stream cubes
– Full materialization: too space and time consuming
– No materialization: slow response at query time
– Partial materialization: what do we mean “partial”?

• On-line materialization
– Materialization takes precious resources and time

• Only incremental materialization (with slide window)
– Only materialize “cuboids” of the critical layers?

• Some intermediate cells that should be materialized
– Popular path approach vs. exception cell approach

• Materialize intermediate cells along the popular paths
• Exception cells: how to set up exception thresholds?
• Notice exceptions do not have monotonic behaviour

• Computation problem
– How to compute and store stream cubes efficiently?
– How to discover unusual cells between the critical layer?

[Han 2004]

109

Data Warehouse:
Stream Cube Computation
• Cube structure from m-layer to o-layer
• Three approaches

– All cuboids approach
• Materializing all cells (too much in both space and time)

– Exceptional cells approach
• Materializing only exceptional cells (saves space but not

time to compute and definition of exception is not flexible)
– Popular path approach

• Computing and materializing cells only along a popular path
• Using H-tree structure to store computed cells (which form

the stream cube—a selectively materialized cube)

[Han 2004]

110

Other Approaches for Mining Unusual
Patterns in Stream Data

• Beyond multi-dimensional regression analysis
– Other approaches can be effective for mining unusual patterns

• Multi-dimensional gradient analysis of multiple streams
– Gradient analysis: finding substantial changes (notable gradients)

in relevance to other dimensions
– E.g., those stocks that increase over 10% in the last hour

• Clustering and outlier analysis for stream mining
– Clustering data streams
– History-sensitive, high-quality incremental clustering

• Decision tree analysis of stream data
– Evolution of decision trees
– Incremental integration of new streams in decision-tree induction

[Han 2004]

111

Research Problems: Stream Classification

• What about decision tree may need dramatic restructuring?
– Especially when new data is rather different from the

existing model
– Efficient detection of outliers (far away from majority)

using constructed models
• Weighted by history of the data: pay more attention to new

data?
• Mining evolutions and changes of models?
• Multi-dimensional decision tree analysis?
• Stream classification with other classification approaches?
• Constraint-based classification with data streams?

[Han 2004]

112

Research Problems: Stream Data Mining

• Stream data mining: should it be a general approach or application-
specific ones?
– Do stream mining applications share common core requirements

and features?
• Killer applications in stream data mining
• General architectures and mining language
• Multi-dimensional, multi-level stream data mining

– Algorithms and applications
• How will stream mining make good use of user-specified constraints?
• Stream association and correlation analysis

– Measures: approximation? Without seeing the global picture?
– How to mine changes of associations?

[Han 2004]

113

DSMS Tutorial Outline
• Introduction:

– What are DSMS? (terms)
– Why do we need DSMS? (applications)

• Example 1:
– Network monitoring with TelegraphCQ

• Concepts and issues:
– Architecture(s)
– Data modeling
– Query processing and optimization
– Data reduction
– Stream Mining

• Overview of existing systems
• Example 2:

– DSMS for sensor networks
• Summary:

– Open issues
– Conclusions

114

Systems
• Aurora (Brandeis, Brown, MIT, http://www.cs.brown.edu/research/aurora): workflow-

oriented system, sensor monitoring, dataflow
• COUGAR (Cornell, http://www.cs.cornell.edu/database/cougar): sensor database,

time series
• GigaScope (AT&T): distributed network monitoring architecture, proprietary system
• Hancock (AT&T): telecom streams
• NiagaraCQ (OGI/Wisconsin, http://www.cs.wisc.edu/niagara): continuous XML query

system for dynamic web content
• OpenCQ (Georgia Tech, http://disl.cc.gatech.edu/CQ): continuous query system for

monitoring streaming web content, triggers, incr. view maintenance
• StatStream (http://cs.nyu.edu/cs/faculty/shasha/papers/statstream.html): multi-

stream monitoring system for on-line statistics
• STREAM (Stanford, http://www-db.stanford.edu/stream): general-purpose relation-

based system
• Streaminer (UIUC): stream data mining project
• Tapestry (Xerox): pub/sub content-based filtering
• TelegraphCQ (UC Berkeley, http://telegraph.cs.berkeley.edu): adaptive engine for

sensors, continuous query processing system
• Tradebot (www.tradebot.com): stock tickers & streams
• Tribeca (Bellcore): network monitoring, early on-line Internet traffic monitoring tool

115

Aurora
• Data processing system targeted towards monitoring applications:

– Streams: for each monitorind task DBA adds 1-n triggers into trigger
network

– Large network of triggers
– Imprecise data
– Real-time requirements

• Specified set of operators, connected in a data flow graph
• Each trigger is data flow graph (each node is one of seven built-in

operators)
• Optimization of:

– Data flow graph
– Compile-time and run-time optimization of trigger network

• Three query modes (continuous, ad-hoc, view)
• Detects resource overload: accepts QoS specifications and

attempts to optimize QoS for outputs produced
• Real-time scheduling, introspection and load shedding

116

GigaScope

• Specialized stream database for network
applications

• GSQL for declarative query specifications: pure
stream query language (stream input/output)

• Uses ordering attributes in IP streams
(timestamps and their properties) to turn
blocking operators into non blocking ones

• GSQL processor is code generator.
• Query optimization uses a two level hierarchy

117

Hancock

• A C-based domain specific language
which facilitates transactor signature
extraction from transactional data streams

• Support for efficient and tunable
representation of signature collections

• Support for custom scalable persistent
data structures

• Elaborate statistics collection from streams

118

NiagaraCQ

• CQs for monitoring persistent data sets
distributed over WAN

• Scalability (# queries) by grouping CQs
for efficient evaluation

• Problem of blocking operators in query
plans for streams

119

OpenCQ

• CQs for monitoring persistent data sets
distributed over WAN

• QP based on incremental view
maintenance

120

STREAM
• General purpose stream data manager

– Data streams and stored relations
• CQL (continuous query language) for

declarative query specification
• Timestamps in streams
• Flexible query plan generation
• Query processing architecture
• Resource management:

– Operator scheduling
– Graceful approximation: can handle high data rates

• Static and dynamic approximations

121

Tapestry

• CQs for content-based filtering
– Over append-only database containing email

and bulletin board messages
• Restricted subset of SQL

– To guarantee efficient evaluation and append-
only results

122

Telegraph

• CQ processing system
– Uses adaptive query engine
– Query execution strategies over data streams

generated by sensors
– Processing techniques for multiple CQs

• Support for stream oriented operators
• Support for adaptivity in query processing

– optimization
• Various aspects of optimized multi-query stream

processing

123

Tribeca

• Restricted querying capability over
network packet streams

124

System Comparison

VLDB 2003 Tutorial [Koudas & Srivastava 2003]

125

DSMS Tutorial Outline
• Introduction:

– What are DSMS? (terms)
– Why do we need DSMS? (applications)

• Example 1:
– Network monitoring with TelegraphCQ

• Concepts and issues:
– Architecture(s)
– Data modeling
– Query processing and optimization
– Data reduction
– Stream Mining

• Overview of existing systems
• Example 2:

– DSMS for sensor networks
• Summary:

– Open issues
– Conclusions

Some Sensornet Applications

Redwood forest
microclimate monitoring

Smart cooling in data centers

http://www.hpl.hp.com/research/dca/smart_cooling/

ZebraNet

127

Principles of Sensor Networks
• A large number of low-cost, low-power,

multifunctional, and small sensor nodes
• Sensor node consists of sensing, data

processing, and communicating components
• A sensor network is composed of a large

number of sensor nodes,
– which are densely deployed either inside the

phenomenon or very close to it.
• The position of sensor nodes need not be

engineered or pre-determined.
– sensor network protocols and algorithms must

possess self-organizing capabilities.

128

Sensor Hardware
• A sensor node is made up of four basic components

– a sensing unit
• usually composed of two subunits: sensors and analog to digital

converters (ADCs).
– processing unit,

• Manages the procedures that make the sensor node collaborate with
the other nodes to carry out the assigned sensing tasks.

– A transceiver unit
• Connects the node to the network.

– Power units (the most important unit)

• Matchbox-sized module
– consume extremely low power,
– operate in high volumetric densities,
– have low production cost and be dispensable,
– be autonomous and operate unattended,
– be adaptive to the environment.

129

Sensor Hardware (cont.)

• Motes:

• ZebraNet II:

130

Sensor networks communication architecture

The sensor nodes are usually scattered in a sensor field
Each of these scattered sensor nodes has the
capabilities to collect data and route data back to
the sink

The sink may communicate
with the task manager node
via Internet or Satellite.

131

Aurora & Medusa

• Aurora: single-site high performance
stream processing engine

• Aurora*: connecting multiple Aurora
workflows in a distributed environment

• Medusa: distributed environment where
hosts belong to different organizations
and no common QoS notion is feasable

132

Important Aspects of Aurora

• Workflow orientation
• Operators
• Scheduler
• Quality of Service
• Optimizations

133

Aurora System Model

134

Aurora Workflows
• Two reasons to build Aurora as a workflow

system:
– Most monitoring applications contain a

component that performs sensor fusion or data
cleansing

• This can be part of DSMS or a different sub-system
(less control and more boundary crossings)

– Query optimization: application designers locate
the correct place in workflow diagram to add
needed functionality ⇒ reduces complexity of
query optimization

135

136

Aurora Operators

• Windowed operations have timeout
capability

• Handling out-of-order messages
• Extendability
• Resample operator

137

Aurora Operators (cont.)

138

Aurora Operators (cont.)

139

Aurora: Quality of Service

• Basic idea: use human specified QoS
graphs at Aurora output

Drop based Value-based

140

Aurora: Scheduler ↔ Storage

141

Aurora Query Model

142

Aurora Architecture

143

Aurora* Architecture
External QoS

Monitor

144

Example: Enviromental Monitoring

• Monitoring toxins in the water
– Fish behaviour
– Water quality

145

Medusa

146

TinyDB
SELECT MAX(mag)
FROM sensors
WHERE mag > thresh
SAMPLE PERIOD 64ms

• High level abstraction:
– Data centric programming
– Interact with sensor network

as a whole
– Extensible framework

• Under the hood:
– Intelligent query processing:

query optimization, power
efficient execution

– Fault Mitigation: automatically
introduce redundancy, avoid
problem areas

App

Sensor Network

TinyDB

Query,
Trigger Data

[Source: Sam Madden]

147

Feature Overview
• Declarative SQL-like query interface
• Metadata catalog management
• Multiple concurrent queries
• Network monitoring (via queries)
• In-network, distributed query processing
• Extensible framework for attributes, commands

and aggregates
• In-network, persistent storage

[Source: Sam Madden]

• NesC: a C dialect for
embedded
programming
– Components, “wired

together”
– Quick commands and

asynch events

Think of the pair as a programming environment

NesC/TinyOS

• TinyOS: a set of
NesC components
– hardware components
– ad-hoc network

formation &
maintenance

– time synchronization

[Source: Sam Madden]

149

TinyDB GUI

TinyDB Client API DBMS

Sensor network

TinyDB Architecture

TinyDB query
processor

0

4

0

1

5

2

6

3

7

JDBC

Mote side

PC side

8

[Source: Sam Madden]

150

Inside TinyDB

TinyOS

Schema

Query Processor

Multihop
Network

Filterlight > 400

get (‘temp’)

Aggavg(temp)

Queries
SELECT
AVG(temp)
WHERE
light > 400

Results
T:1, AVG: 225
T:2, AVG: 250

Tables Samples got(‘temp’)
Name: temp
Time to sample: 50 uS
Cost to sample: 90 uJ
Calibration Table: 3
Units: Deg. F
Error: ± 5 Deg F
Get f : getTempFunc()…

getTempFuncgetTempFunc((……))

TinyDBTinyDB [Source: Sam Madden]

151

Inside TinyDB

TinyOS

Schema

Query Processor

Multihop
Network

Filterlight > 400

get (‘temp’)

Aggavg(temp)

Queries
SELECT
AVG(temp)
WHERE
light > 400

Results
T:1, AVG: 225
T:2, AVG: 250

Tables Samples got(‘temp’)
Name: temp
Time to sample: 50 uS
Cost to sample: 90 uJ
Calibration Table: 3
Units: Deg. F
Error: ± 5 Deg F
Get f : getTempFunc()…

getTempFuncgetTempFunc((……))

TinyDBTinyDB

~10,000 Lines Embedded C Code

~5,000 Lines (PC-Side) Java

~3200 Bytes RAM (w/ 768 byte heap)

~58 kB compiled code

(3x larger than 2nd largest TinyOS Program)
[Source: Sam Madden]

152

TinyDB Status
• Latest released with TinyOS 1.1 (9/03)

– Install the task-tinydb package in TinyOS 1.1 distribution
– First release in TinyOS 1.0 (9/02)
– Widely used by research groups as well as industry pilot

projects

• Successful deployments in Intel Berkeley Lab and
redwood trees at UC Botanical Garden
– Largest deployment: ~80 weather station nodes
– Network longevity: 4-5 months

[Source: Sam Madden]

153

TinyDB Data Model
• Entire sensor network as one single, infinitely-long

logical table: sensors
• Columns consist of all the attributes defined in the

network
• Typical attributes:

– Sensor readings
– Meta-data: node id, location, etc.
– Internal states: routing tree parent, timestamp,

queue length, etc.
• Nodes return NULL for unknown attributes
• On server, all attributes are defined in catalog.xml
• Discussion: other alternative data models?

[Source: Sam Madden]

154

TinySQL
SELECT <aggregates>, <attributes>
[FROM {sensors | <buffer>}]
[WHERE <predicates>]
[GROUP BY <exprs>]
[SAMPLE PERIOD <const> | ONCE]
[INTO <buffer>]
[TRIGGER ACTION <command>]

[Source: Sam Madden]

155

TinySQL Examples

SELECT nodeid, nestNo, light
FROM sensors
WHERE light > 400
EPOCH DURATION 1s

1

2

1

2

1

NodeidNodeid

405251

422171

389250

455170

LightLightnestNonestNoEpochEpoch
Sensors

“Find the sensors in bright
nests.”

[Source: Sam Madden]

156

TinySQL Examples (cont.)

3

3

3

3

CNT(…)

520

370

520

360

AVG(…)

South0

North1

South1

North

region

0

Epoch

“Count the number occupied
nests in each loud region of
the island.”

SELECT region, CNT(occupied)
 AVG(sound)

FROM sensors

GROUP BY region

HAVING AVG(sound) > 200

EPOCH DURATION 10s

3

Regions w/ AVG(sound) > 200

SELECT AVG(sound)

FROM sensors

EPOCH DURATION 10s

2

[Source: Sam Madden]

157

Event-based Queries
• ON event SELECT …
• Run query only when interesting events happens
• Event examples

– Button pushed
– Message arrival
– Bird enters nest

• Analogous to triggers but events are user-
defined

[Source: Sam Madden]

158

Query over Stored Data
• Named buffers in Flash memory
• Store query results in buffers
• Query over named buffers
• Analogous to materialized views
• Example:

– CREATE BUFFER name SIZE x (field1 type1, field2 type2, …)
– SELECT a1, a2 FROM sensors SAMPLE PERIOD d INTO name
– SELECT field1, field2, … FROM name SAMPLE PERIOD d

[Source: Sam Madden]

159

DSMS Tutorial Outline
• Introduction:

– What are DSMS? (terms)
– Why do we need DSMS? (applications)

• Example 1:
– Network monitoring with TelegraphCQ

• Concepts and issues:
– Architecture(s)
– Data modeling
– Query processing and optimization
– Data reduction
– Stream Mining

• Overview of existing systems
• Example 2:

– DSMS for sensor networks
• Summary:

– Open issues
– Conclusions

160

Open Issues

• Multi-way joins equality predicates
– How do we use constraints and punctuations

effectively?
– Self-joins: looking for patterns in a single stream
– Natural constraints other than “nesting” constraints

• Approximate aggregate:
– How can this work be used by data stream systems?
– Engineering summary structures (sketches, samples)

for low-level data stream processing

VLDB 2003 Tutorial [Koudas & Srivastava 2003]

161

Open Issues (cont.)

• Query decomposition:
– Three-level architecture (low-level and high-level

data streams, DBMS)
– How do we decompose a declarative (SQL) query?

• Need to take resource limitations at each level into account
• Which sub-queries are evaluated by which level?

• Distributed evaluation:
– How do we correlate distributed data streams?

• May not be feasible to bring all relevant data to a single site
• Can one use techniques from distributed DBMSs?

VLDB 2003 Tutorial [Koudas & Srivastava 2003]

162

Open Issues (cont.)
• Query optimization:

– Data stream properties (arrival rate, sortedness) may
vary a lot

– How do we evaluate queries efficiently?
• Adaptive strategies like Eddies have high overheads, and

may not be directly feasible for data stream systems
• Can one borrow ideas from queueing theory?

• I/O and streaming:
– High-level data stream processing can populate

DBMS
– How do we process streams to minimize DBMS I/O?

• Need to process streams in blocks, using multiple passes
• How can multiple streams be correlated for this purpose?

VLDB 2003 Tutorial [Koudas & Srivastava 2003]

163

Conclusions
• Applications of Data Stream Management Systems

– Near real-time queries and potentially massive data volumes
– Sensor networks, network monitoring, intrusion detection, ….

• Stream data analysis: A rich and largely unexplored field
– Current research focus in database community: DSMS system

architecture, continuous query processing, supporting
mechanisms, QoS issues, distribution

• Data mining and OLAP analysis of streams
– Powerful tools for finding general and unusual patterns
– Largely unexplored: current studies only touched the surface

• Many challenging technical problems
– Resource limitations exist, especially at low-level
– Important to think of the end-to-end architecture

164

Conclusions (cont.)

• Some research prototypes are available
– TelegraphCQ
– Aurora
– Niagara

• Very active research area is promising
many new results

